
Unit 10- Distributed System Architecture(3hr) BIM IV/ II Compiled By : Er. Jeewan Rai

oracle03511@gmail.com Page 1 of 6

10.1 Remote Procedure Call (RPC)
10.2 Object Management Architecture (OMA)
10.3 Distributed Resource Architecture

10.3.1 Distributed data Architecture
10.3.2 Distributed Server Architecture
10.3.3 Distributed Computing Architecture

10.1 Remote Procedure Call (RPC)
In distributed computing a remote procedure call (RPC) is when a computer program causes a procedure (subroutine) to execute in another
address space (commonly on another computer on a shared network), which is coded as if it were a normal (local) procedure call, without
the programmer explicitly coding the details for the remote interaction. That is, the programmer writes essentially the same code whether
the subroutine is local to the executing program, or remote. This is a form of client–server interaction (caller is client, executer is server),
typically implemented via a request–response message-passing system.
RPCs are a form of inter-process communication (IPC), in that different processes have different address spaces: if on the same host
machine, they have distinct virtual address spaces, even though the physical address space is the same; while if they are on different hosts,
the physical address space is different.
How RPC Works

RPC is a kind of request–response protocol. An RPC is initiated by the client, which sends a request message to a known remote server to
execute a specified procedure with supplied parameters. The remote server sends a response to the client, and the application continues
its process. While the server is processing the call, the client is blocked (it waits until the server has finished processing before resuming
execution), unless the client sends an asynchronous request to the server, such as an XHTTP call. There are many variations and subtleties
in various implementations, resulting in a variety of different (incompatible) RPC protocols.

An important difference between remote procedure calls and local calls is that remote calls can fail because of unpredictable network
problems. Also, callers generally must deal with such failures without knowing whether the remote procedure was actually invoked.

RPC Process

Stub = piece of code that converts parameters passed between client and
server

1. The client calls a local procedure, called the client stub. To the client

process, this appears to be the actual procedure, because it is a regular

local procedure. It just does something different since the real

procedure is on the server. The client stub packages the parameters to

the remote procedure (this may involve converting them to a standard

format) and builds one or more network messages. The packaging of

arguments into a network message is called marshaling and

requires serializing all the data elements into a flat array-of-bytes

format.

2. Network messages are sent by the client stub to the remote system (via a system call to the local kernel i.e. client OS

using sockets interfaces).

3. Network messages are transferred by the kernel to the remote system via some protocol (either connectionless or connection-

oriented).

4. A server stub, sometimes called the skeleton, receives the messages on the server. It unmarshals the arguments from the messages

and, if necessary, converts them from a standard network format into a machine-specific form.

5. The server stub calls the server function (which, to the client, is the remote procedure), passing it the arguments that it received from

the client.

6. When the server function is finished, it returns to the server stub with its return values.

7. The server stub converts the return values, if necessary, and marshals them into one or more network messages to send to the client

stub.

8. Messages get sent back across the network to the client stub.

9. The client stub reads the messages from the local kernel.

10. The client stub then returns the results to the client function, converting them from the network representation to a local one if

necessary.

Fig. RPC Process

mailto:oracle03511@gmail.com
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Request%E2%80%93response
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Physical_address
https://en.wikipedia.org/wiki/Request%E2%80%93response

Unit 10- Distributed System Architecture(3hr) BIM IV/ II Compiled By : Er. Jeewan Rai

oracle03511@gmail.com Page 2 of 6

10.2 Object Management Architecture (OMA)
Object Management Group(OMG) is an organization that represents over 700 software vendors, software developers, and end users.
OMG describes its mission as developing "The Architecture for a Connected World." It was established in 1989 to promote object
technologies on distributed computing systems. To this end, it has developed a common architectural framework for object-oriented
applications based on an open and widely available interface specification called OMA (Object Management Architecture).
OMA is an architecture developed by the OMG (Object Management Group) that provides an industry standard for developing object-
oriented applications to run on distributed networks. The goal of the OMG is to provide a common architectural framework for object-
oriented applications based on widely available interface specifications.
The OMA reference model identifies and characterizes components, interfaces, and protocols that comprise the OMA. It consists of
components that are grouped into application-oriented interfaces, industry-specific vertical applications, object services, and ORBs (object
request brokers). The ORB defined by the OMG is known more commonly as CORBA (Common Object Request Broker Architecture).

 The OMA is composed of four component categories:

• Object Request Broker (ORB) - It is a communication
infrastructure that allows or facilitates object
communication. The ORB relays object requests across
distributed heterogeneous computing environments.

• Object Services - Object services are low-level system type
services (object persistence, transaction capabilities,
security, etc..). This collection of system-oriented services
allows application developers to construct applications
without having to 'reinvent the wheel'. Support for object
services must be supported by all ORB environments and
platforms.

• Common Facilities - Common facilities are high-level,
application-oriented services (such as mail and printing
facilities). Unlike Object Services, support for common
facilities is discretionary.

• Application Objects - Application objects are developers programs, legacy systems and commercial software. These objects make
use of the other three component categories.

10.3 Distributed Resource Architecture
Main goal of a distributed system is to effectively utilize the collective resources of the system, namely, the memory and the processors
of the individual nodes. This certain problems affecting to sharing memory and processors in distributed systems.

- Issue arise while sharing memory in a distributed system: memory contention and faults.
- load balancing, which is a mechanism for sharing processors in a distributed system.

Distributed resource system and architecture may be used for generalized computing applications or specialized applications such as
graphics and visualization. The resources can be located remotely from the users because only the results of the execution are transmitted
over the network to reduce bandwidth requirements and transmit time. Therefore, the bulk of the data needed to generate the results
remains where they were generated and are accessed on a more frequent basis. Each resource is operable to access data generally stored
co-located therewith, generate the pixel data, and the network compositor is operable to composite the pixel data into one or more
graphical images and deliver the images to the dedicated display devices.

10.3.1 Distributed data Architecture
A distributed database system allows applications to access data from local and remote databases. In a homogenous distributed database
system, each database is an Oracle Database. In a heterogeneous distributed database system, at least one of the databases is not an
Oracle Database. Distributed databases use a client/server architecture to process information requests.

mailto:oracle03511@gmail.com
http://www.sage-technologies.net/corba/Orbarch.htm
http://www.sage-technologies.net/corba/Orbarch.htm#OBSERV
http://www.sage-technologies.net/corba/Orbarch.htm#COMFAC

Unit 10- Distributed System Architecture(3hr) BIM IV/ II Compiled By : Er. Jeewan Rai

oracle03511@gmail.com Page 3 of 6

• Homogenous Distributed Database Systems

• Heterogeneous Distributed Database Systems

• Client/Server Database Architecture
Homogenous Distributed Database Systems
- A homogenous distributed database system is a network of two or more Oracle Databases that reside on one or more machines.

Figure 29-1 illustrates a distributed system that connects three databases: hq, mfg, and sales. An application can simultaneously
access or modify the data in several databases in a single distributed environment. For example, a single query from a Manufacturing
client on local database mfg can retrieve joined data from the products table on the local database and the dept table on the remote
hq database.
- For a client application, the location and platform of the databases are transparent. You can also create synonyms for remote objects

in the distributed system so that users can access them with the same syntax as local objects. For example, if you are connected to
database mfg but want to access data on database hq, creating a synonym on mfg for the remote dept table enables you to issue this
query:
- SELECT * FROM dept;
In this way, a distributed system gives the appearance of native data access. Users on mfg do not have to know that the data they access

resides on remote databases.
Heterogeneous Distributed Database Systems
- In a heterogeneous distributed database system, at least one of the databases is a non-Oracle Database system. To the application,

the heterogeneous distributed database system appears as a single, local, Oracle Database. The local Oracle Database server hides the
distribution and heterogeneity of the data.
- The Oracle Database server accesses the non-Oracle Database system using Oracle Heterogeneous Services in conjunction with an

agent. If you access the non-Oracle Database data store using an Oracle Transparent Gateway, then the agent is a system-specific
application. For example, if you include a Sybase database in an Oracle Database distributed system, then you need to obtain a Sybase-
specific transparent gateway so that the Oracle Database in the system can communicate with it.
- Alternatively, you can use generic connectivity to access non-Oracle Database data stores so long as the non-Oracle Database system

supports the ODBC or OLE DB protocols.

Client/Server Database Architecture - Centralized
A database server managing a database, and a client is an application that requests information from a server. Each computer in a network
is a node that can host one or more databases. Each node in a distributed database system can act as a client, a server, or both, depending
on the situation.
Database functionality can be divided into:
- Back-end (Server): manages access structures, query evaluation and optimization, concurrency control and recovery.
- Front-end (Client): consists of tools such as forms, report-writers, and graphical user interface facilities.

mailto:oracle03511@gmail.com
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts001.htm#i1007551
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts001.htm#i1007606
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts001.htm#i1007639
https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_concepts001.htm#CHDBIFGJ

Unit 10- Distributed System Architecture(3hr) BIM IV/ II Compiled By : Er. Jeewan Rai

oracle03511@gmail.com Page 4 of 6

The interface between the front-end and the back-end is through SQL or through an application program interface.

10.3.2 Distributed Server Architecture
The following is a diagram of a typical DSA setup with two servers. Each Server is behind a firewall, possibly in a separate office, although
it is easy to set up multiple servers in a single office as well. It is important that the Servers have high-speed connections to replicate the
Tivoli Endpoint Manager data (generally LAN speeds of 10-100Mbps are required). The Tivoli Endpoint Manager Servers communicate
over ODBC and HTTP protocols. This DSA configuration provides automatic failover and failback services, minimizing loss of data.

10.3.3 Distributed Computing Architecture
A distributed system is a network of independent computers that communicate with each other in order to achieve a goal. The computers
in a distributed system are independent and do not physically share memory or processors. They communicate with each other
using messages, pieces of information transferred from one computer to another over a network. Messages can communicate many
things: computers can tell other computers to execute a procedure with particular arguments, they can send and receive packets of data,
or send signals that tell other computers to behave a certain way.
Computers in a distributed system can have different roles. A computer's role depends on the goal of the system and the computer's own
hardware and software properties. There are two main ways of organizing computers in a distributed system. The first is the client-server
architecture, and the second is the peer-to-peer architecture.

mailto:oracle03511@gmail.com

Unit 10- Distributed System Architecture(3hr) BIM IV/ II Compiled By : Er. Jeewan Rai

oracle03511@gmail.com Page 5 of 6

Client/Server Systems
The client-server architecture is a way to dispense a service from a central source. There is a single server that provides a service, and
multiple clients that communicate with the server to consume its products. In this architecture, clients and servers have different jobs.
The server's job is to respond to service requests from clients, while a client's job is to use the data provided in response in order to
perform some task.

The client-server model of communication can be traced back to the introduction of UNIX in the 1970's, but perhaps the most influential
use of the model is the modern World Wide Web. An example of a client-server interaction is reading the New York Times online. When
the web server at www.nytimes.com is contacted by a web browsing client (like Firefox), its job is to send back the HTML of the New York
Times main page. This could involve calculating personalized content based on user account information sent by the client, and fetching
appropriate advertisements. The job of the web browsing client is to render the HTML code sent by the server. This means displaying the
images, arranging the content visually, showing different colors, fonts, and shapes and allowing users to interact with the rendered web
page.
The concepts of client and server are powerful functional abstractions. A server is simply a unit that provides a service, possibly to multiple
clients simultaneously, and a client is a unit that consumes the service. The clients do not need to know the details of how the service is
provided, or how the data they are receiving is stored or calculated, and the server does not need to know how the data is going to be
used.
On the web, we think of clients and servers as being on different machines, but even systems on a single machine can have client/server
architectures. For example, signals from input devices on a computer need to be generally available to programs running on the computer.
The programs are clients, consuming mouse and keyboard input data. The operating system's device drivers are the servers, taking in
physical signals and serving them up as usable input.
A drawback of client-server systems is that the server is a single point of failure. It is the only component with the ability to dispense the
service. There can be any number of clients, which are interchangeable and can come and go as necessary. If the server goes down,
however, the system stops working. Thus, the functional abstraction created by the client-server architecture also makes it vulnerable to
failure.
Another drawback of client-server systems is that resources become scarce if there are too many clients. Clients increase the demand on
the system without contributing any computing resources. Client-server systems cannot shrink and grow with changing demand.
Peer-to-peer Systems
The client-server model is appropriate for service-oriented situations. However, there are other computational goals for which a more
equal division of labor is a better choice. The term peer-to-peer is used to describe distributed systems in which labor is divided among all
the components of the system. All the computers send and receive data, and they all contribute some processing power and memory. As
a distributed system increases in size, its capacity of computational resources increases. In a peer-to-peer system, all components of the
system contribute some processing power and memory to a distributed computation.
Division of labor among all participants is the identifying characteristic of a peer-to-peer system. This means that peers need to be able to
communicate with each other reliably. In order to make sure that messages reach their intended destinations, peer-to-peer systems need
to have an organized network structure. The components in these systems cooperate to maintain enough information about the locations
of other components to send messages to intended destinations.
In some peer-to-peer systems, the job of maintaining the health of the network is taken on by a set of specialized components. Such
systems are not pure peer-to-peer systems, because they have different types of components that serve different functions. The
components that support a peer-to-peer network act like scaffolding: they help the network stay connected, they maintain information
about the locations of different computers, and they help newcomers take their place within their neighborhood.

mailto:oracle03511@gmail.com
http://wla.berkeley.edu/~cs61a/fa11/lectures/communication.html#id3
http://wla.berkeley.edu/~cs61a/fa11/lectures/communication.html#id4

Unit 10- Distributed System Architecture(3hr) BIM IV/ II Compiled By : Er. Jeewan Rai

oracle03511@gmail.com Page 6 of 6

The most common applications of peer-to-peer systems are data transfer and data storage. For data transfer, each computer in the system
contributes to send data over the network. If the destination computer is in a particular computer's neighborhood, that computer helps
send data along. For data storage, the data set may be too large to fit on any single computer, or too valuable to store on just a single
computer. Each computer stores a small portion of the data, and there may be multiple copies of the same data spread over different
computers. When a computer fails, the data that was on it can be restored from other copies and put back when a replacement arrives.
Skype, the voice- and video-chat service, is an example of a data transfer application with a peer-to-peer architecture. When two people
on different computers are having a Skype conversation, their communications are broken up into packets of 1s and 0s and transmitted
through a peer-to-peer network. This network is composed of other people whose computers are signed into Skype. Each computer knows
the location of a few other computers in its neighborhood. A computer helps send a packet to its destination by passing it on a neighbor,
which passes it on to some other neighbor, and so on, until the packet reaches its intended destination. Skype is not a pure peer-to-peer
system. A scaffolding network of supernodes is responsible for logging-in and logging-out users, maintaining information about the
locations of their computers, and modifying the network structure to deal with users entering and leaving.

mailto:oracle03511@gmail.com

